Медицинские проблемы, способные поставить крест на исследованиях дальнего космоса

Так как человечество собирается в относительно недалеком будущем все-таки начать колонизацию Луны и других космических тел нашей Солнечной системы, то, скорее всего, вы хотели бы узнать о тех рисках и проблемах со здоровьем, которые могут с определенной долей вероятности проявиться у космических колонистов?

Если так, то предлагаем ознакомиться с подборкой из 20 самых вероятных проблем со здоровьем, с которыми придется столкнутся (если мы их не решим до этого момента) пионерам эры человеческих космических колонизаций.

Проблемы с сердцем

Западное медицинское исследование и наблюдение за 12 астронавтами показало, что при продолжительном нахождении в условиях микрогравитации сердце человека на 9,4 процента сильнее приобретает сферическую форму, что в свою очередь может вызывать самые различные проблемы с его работой. Особенно актуальной эта проблема может стать при длительных космических путешествиях, например, к Марсу.

«Сердце в космосе работает совсем не так, как оно работает в условиях земной гравитации, что в свою очередь может привести к утрате его мышечной массы», — говорит доктор Джемс Томас из NASA.

«Все это повлечет за собой серьезные последствия после возвращения на Землю, поэтому в настоящий момент мы ищем возможные способы, которые позволят избежать или по крайней мере снизить эту потерю мышечной массы».

Специалисты отмечают, что после возвращения на Землю сердце обретает свою изначальную форму, однако никому не известно, как один из важнейших органов нашего организма поведет себя после долгих перелетов. Докторам уже известны случаи, когда вернувшиеся обратно астронавты испытывали головокружение и дезориентацию. В некоторых случаях отмечается резкое изменение в артериальном давлении (происходит его резкое снижение), особенно когда человек пытается встать на ноги. Помимо этого, у некоторых астронавтов во время миссий наблюдается аритмия (нарушение сердечного ритма).

Исследователи отмечают необходимость в разработке методов и правил, которые позволят путешественникам дальнего космоса избежать данные виды проблем. Как отмечается, такие методы и правила могли бы пригодиться не только космонавтам, но и обычным людям на Земле — испытывающим проблемы работы сердца, а также тем, кому прописан постельный режим.

В настоящий момент началась пятилетняя исследовательская программа, задачей которой будет определение уровня воздействия космоса на ускорение развития у космонавтов атеросклероза (болезнь кровеносных сосудов).

Пьянство и психические расстройства

Несмотря на то, что проведенный NASA анонимный опрос снял подозрения в частом употреблении астронавтами алкогольных напитков, в 2007 году произошли два случая, когда фактически пьяных астронавтов из NASA допустили для полета внутри российского космического корабля «Союз». При этом лететь людям разрешили даже после того, как медики, готовившие этих астронавтов к полету, а также другие участники миссии рассказали начальству о весьма горячей кондиции своих коллег.

Согласно политике безопасности того времени, NASA говорило об официальном запрете употребления астронавтами алкоголя за 12 часов перед тренировочными полетами. Действие этого правила также негласно предполагалось и на время космических полетов. Однако после вышеописанного инцидента, NASA возмутила такая беспечность астронавтов, что агентство решило сделать это правило в отношении космических полетов официальным.

Бывший астронавт Майк Маллэйн рассказал однажды о том, что астронавты употребляли алкоголь перед полетом для дегидратации организма (алкоголь обезвоживает), чтобы в конечном итоге снизить нагрузку на мочевой пузырь и в момент запуска внезапно не захотеть в туалет.

Свое место среди опасностей в рамках космических миссий имел также и психологический аспект. Во время космической миссии Skylab 4 астронавтам настолько «надоело» общаться с центром управления космическими полетами, что они почти на сутки отключили радиосвязь и игнорировали поступающие от NASA сообщения. После этого инцидента ученые стараются определить и решить потенциальные негативные психологические эффекты, которые могут возникнуть в рамках более стрессовых и продолжительных миссий к Марсу.

Недостаток сна и использование снотворных

Десятилетнее исследование показало, что последние недели перед запуском и во время начала космических миссий астронавты явно недосыпают. Среди опрошенных три из четырех признавались, что употребляли медицинские средства, которые помогали им уснуть, даже невзирая на то, что употребление подобных медикаментов могло быть опасным во время управления космическим аппаратом и при работе с другим оборудованием. Опаснее всего ситуация в таком случае могла бы оказаться тогда, когда астронавты принимали одно и то же лекарство и в одно и то же время. В таком случае в момент возникшей чрезвычайной ситуации, требующей экстренного решения, они могли бы ее просто проспать.

Несмотря на то, что NASA приписало каждому астронавту спать как минимум восемь с половиной часов в день, большинство из них каждодневно отдыхали всего около шести часов во время выполнения миссий. Серьезность такой нагрузки на организм усугублялась еще и тем, что в течение последних трех месяцев тренировок перед полетом люди ежедневно спали менее шести с половиной часов.

«Будущие миссии на Луну, Марс и дальше потребуют разработки более эффективных мер для решения вопросов нехватки сна и оптимизации производительности человека во время космического полета», — говорит старший исследователь данного вопроса доктор Чарльз Кзейлер.

«Эти меры могут включать изменения графика работ, которые будут выполняться с учетом воздействия на человека определенных световых волн, а также изменения в поведенческой стратегии экипажа для более комфортного входа в состояние сна, которое обязательно необходимо для восстановления здоровья, сил и хорошего настроения на следующий день».

Потеря слуха

Исследования показали, что еще со времен миссий космических шаттлов у некоторых астронавтов отмечались случаи временной значительной и менее значительной потери слуха. Отмечались они чаще всего при воздействии на людей высоких звуковых частот. У членов экипажа советской космической станции «Салют-7» и российского «Мира» также регистрировались незначительные или весьма значительные эффекты снижения слуха после возвращения на Землю. Опять же во всех этих случаях причиной частичной или полной временной потери слуха являлось воздействие высоких звуковых частот.

Экипажу Международной космической станции предписано каждодневное ношение беруш. Для снижения шума на борту МКС, помимо прочих мер, было предложено использование специальных звукоизоляционных прокладок внутри стен станции, а также установка более тихих вентиляторов.

Однако, помимо шумного фона, на потерю слуха могут влиять и другие факторы: например, состояние атмосферы внутри станции, повышение внутричерепного давления, а также повышенный уровень углекислого газа внутри станции.

В 2015 году NASA планирует с помощью экипажа МКС начать изучение возможных способов избегания эффектов потери слуха во время годичных миссий. Ученые хотят посмотреть, насколько долго можно избегать подобных эффектов, и выяснить приемлемый риск, связанный с потерей слуха. Ключевой задачей эксперимента будет определение того, как минимизировать потерю слуха полностью, а не только во время конкретно взятой космической миссии.

Камни в почках

У каждого десятого человека на Земле рано или поздно проявляется проблема камней в почках. Однако данный вопрос становится гораздо острее, когда речь заходит об астронавтах, потому как в условиях космоса кости организма начинают терять полезные вещества еще быстрее, чем на Земле. Внутрь организма выделяются соли (фосфат кальция), которые проникают через кровь и накапливаются в почках. Эти соли могут утрамбовываться и обретать форму камней. При этом размер этих камней может варьироваться от микроскопического до вполне себе серьезного — вплоть до размера с грецкий орех. Проблема заключается в том, что эти камни могут блокировать сосуды и другие потоки, которые питают орган или выводят из почек лишние вещества.

Для астронавтов риск развития почечных каменей опаснее тем, что в условия микрогравитации может снижаться объем крови внутри организма. Кроме того, многие астронавты не пьют по 2 литра жидкостей в день, которые, в свою очередь, могли бы обеспечить полную гидратацию их организма и не позволять камням застаиваться в почках, выводя их частички вместе с мочой.

Отмечается, что как минимум у 14 американских астронавтов развилась проблема с камнями в почках практически разу же после завершения их космических миссий. В 1982 году был зафиксирован случай острой боли у члена экипажа на борту советской станции «Салют-7». Космонавт в течение двух дней мучился от сильнейших болей, в то время как его товарищу ничего не оставалось, как беспомощно наблюдать за страданиями своего коллеги. Сначала все подумали на острый аппендицит, однако через время вместе с мочой у космонавта вышел небольшой почечный камень.

Ученые весьма долгое время разрабатывали специальную ультразвуковую машину размером с настольный компьютер, которая позволяет обнаруживать камни в почках и выводить их с помощью импульсов звуковых волн. Думается, на борту корабля, следующего к Марсу, такая штука могла бы определенно пригодиться...

Заболевания легких

Несмотря на то, что мы пока с точностью не знаем, какие негативные эффекты для здоровья может вызывать пыль с других планет или астероидов, ученым все же известны некоторые весьма неприятные последствия, которые могут проявляться в результате воздействия лунной пыли.

Самый серьезный эффект вдыхания пыли, вероятнее всего, отразится на легких. Однако невероятно острые частицы лунной пыли могут нанести серьезные повреждения не только легким, но и сердцу, заодно вызвав целый букет различных недугов, начиная от сильнейшего воспаления органов и заканчивая раком. Аналогичные эффекты может вызывать, например, асбест.

Острые частицы пыли могут нанести вред не только внутренним органам, но и вызывать воспаление и ссадины на коже. Для защиты необходимо использование специальных многослойных кевлароподобых материалов. Лунная пыль может с легкостью повредить роговицы глаз, что в свою очередь может оказаться наиболее серьезной экстренной ситуацией для человека в космосе.

Ученые с сожалением отмечают, что неспособны смоделировать лунный грунт и провести полный набор тестов, необходимых для определения воздействия лунной пыли на организм. Одна из сложностей в решении этой задачи заключается в том, что на Земле частицы пыли не находятся в вакууме и не подвергаются постоянному воздействию радиации. Лишь дополнительные исследования пыли непосредственно на поверхности самой Луны, а не в лаборатории, смогут обеспечить ученых необходимыми данными для разработки эффективных методов защиты от этих крошечных токсичных убийц.

Сбой иммунной системы

Наша иммунная система меняется и отвечает на любые, даже самые малейшие изменения в нашем организме. Недостаток сна, недостаточный прием питательных веществ или даже обычный стресс — все это ослабляет нашу иммунную систему. Но это на Земле. Изменение же иммунной системы в космосе может в конечном итоге обернуться обычной простудой либо нести потенциальную опасность в развитии куда более серьезных заболеваний.

В космосе распределение иммунных клеток в организме изменяется не сильно. Куда большую угрозу для здоровья могут повлечь за собой изменения в функционировании этих клеток. Когда функционирование клетки снижается, уже подавленные вирусы, находящиеся в человеческом организме, могут заново пробудиться. И сделать это фактически скрытно, без проявления симптомов болезни. При повышении активности иммунных клеток иммунная система слишком остро реагирует на раздражители, вызывая аллергические реакции и другие побочные эффекты вроде сыпи на коже.

«Такие вещи, как радиация, микробы, стресс, микрогравитация, нарушение сна и даже изоляция — все они могут повлиять на изменение работы иммунной системы членов экипажа», — говорит иммунолог NASA Брайан Крушин.

«В рамках долгих космических миссий будет повышаться риск развития инфекций, гиперчувствительности, а также аутоиммунных проблем у астронавтов».

Для решения проблем с иммунной системой NASA планирует использовать новые методы антирадиационной защиты, новый подход к сбалансированному питанию и лекарствам.

Радиационные угрозы

Нынешнее очень необычное и весьма продолжительное отсутствие солнечной активности может способствовать опасным изменениям уровня радиации в космосе. Ничего подобного не происходило почти в течение последних 100 лет.

«Несмотря на то, что подобные события необязательно являются останавливающим фактором для долгих миссий к Луне, астероидам и даже к Марсу, галактическая космическая радиация сама по себе является тем фактором, который может ограничить запланированное время проведения этих миссий», — говорит Нэйтан Швадрон из Института земных, океанических и космических исследований.

Последствия такого рода воздействия могут быть самыми разными, начиная от лучевой болезни и заканчивая развитием рака или поражением внутренних органов. Кроме того, опасные уровни радиационного фона сокращают эффективность антирадиационной защиты космического корабля примерно на 20 процентов.

В рамках всего лишь одной миссии на Марс астронавт может подвергнуться 2/3 той безопасной дозы излучения, которой человек может подвергнуться в худшем случае в течение всей своей жизни. Это излучение может вызвать изменения в ДНК и увеличить риск развития рака.

«Если говорить о накопительной дозе, то это тоже самое, что проводить полное КТ-сканирование организма каждые 5-6 дней», — говорит ученый Кэри Цейтлин.

Когнитивные проблемы

При симуляции состояния нахождения в космосе ученые обнаружили, что воздействие высокозаряженных частиц даже в малых дозах заставляет лабораторных крыс реагировать на окружение гораздо медленнее, и при этом грызуны становятся более раздражительными. Наблюдение за крысами также показало изменение в составе белка в их мозге.

Однако ученые спешат отметить, что не на всех крысах проявлялись одинаковые эффекты. Если это правило действительно и в случае с астронавтами, то, по мнению исследователей, они смогли бы определить биологический маркер, указывающий и предсказывающий скорое проявление этих эффектов у астронавтов. Возможно, этот маркер даже позволил бы найти способ снизить негативные последствия от воздействия радиации.

Более серьезную проблему представляет болезнь Альцгеймера.

«Воздействие уровня радиации, эквивалентного тому, которое придется испытать человеку во время полета на Марс, может способствовать развитию когнитивных проблем и ускорять изменения в работе мозга, которые чаще всего ассоциируют с болезнью Альцгеймера», — говорит невролог Керри О’Бэнион.

«Чем дольше находишься в космосе, тем больше риск развития заболевания».

Один из утешительных фактов заключается в том, что ученые уже успели исследовать один из самых неудачных сценариев воздействия излучения. Они за один раз подвергли лабораторных мышей такому уровню излучения, которое являлось бы характерным для всего времени в рамках миссии на Марс. В свою очередь, люди при полете на Марс будут подвергаться излучению дозированно, в течение трех лет полета. Ученые считают, что человеческий организм может адаптироваться к таким небольшим дозам.

Помимо этого, отмечается, что пластик и легковесные материалы могут обеспечить людям более эффективную защиту от излучения, по сравнению с используемым сейчас алюминием.

Потеря зрения

У некоторых астронавтов отмечается развитие серьезных проблем со зрением после пребывания в космосе. Чем дольше длится космическая миссия, тем вероятнее шанс подобных печальных последствий.

По крайней мере среди 300 американских астронавтов, проходивших медицинскую проверку с 1989 года, проблемы со зрением наблюдались у 29 процентов людей, находившихся в космосе в течение двухнедельных космических миссий, и у 60 процентов людей, которые в течение нескольких месяцев работали на борту Международной космической станции.

Врачи из Техасского университета провели сканирование мозга у 27 астронавтов, проведших в космосе более месяца. У 25 процентов из них наблюдалось уменьшение объема передне-задней оси одного или сразу двух глазных яблок. Такое изменение приводит к дальнозоркости зрения. Опять же отмечалось, чем дольше человек находится в космосе, тем вероятнее данное изменение.

Ученые считают, что объясняться этот негативный эффект может подъемом жидкости к голове в условиях мигрогравитации. В данном случае в черепной коробке начинает накапливаться цереброспинальная жидкость, повышается внутричерепное давление. Просачиваться сквозь кость жидкость не может, поэтому начинает создавать давление на внутреннюю часть глаз. Исследователи пока не уверены, будет ли уменьшаться данный эффект у астронавтов, прибывающих в космосе более шести месяцев. Однако вполне очевидно, что выяснить это будет нужно до того момента, как засылать людей на Марс.

Если проблема вызвана исключительно внутричерепным давлением, то одним из возможных вариантов ее решения будет создание условий искусственной гравитации, каждый день по восемь часов, во время сна астронавтов. Однако говорить о том, поможет ли данный метод или нет — пока рано.

«Эта проблема требует решения, потому что в противном случае она может оказаться главной причиной невозможности длительных космических путешествий», — говорит ученый Марк Шелхамер.

Источник

Невесомость убивает мозг

Длительное пребывание в космосе в условиях невесомости способно вызывать серьезные изменения в мозге, выяснили сибирские ученые, исследовав состояние побывавших на орбите мышей. 

Результаты позволят создать системы для предотвращения и коррекции негативного воздействия невесомости на организм космонавтов. "Самые интересные из полученных данных касаются дофаминовой системы. Мы увидели, что экспрессия ее ключевых генов снижается после месяца нахождения на орбите. Это говорит о том, что дофаминовая система мозга, которая в норме отвечает за тонкую координацию действий, и вообще - за контроль движений, деградирует. 

В долгосрочной перспективе подобное изменение может привести к развитию паркинсоноподобного состояния. Потому что, если у вас уменьшается экспрессия фермента, синтезирующего дофамин, то снижается и уровень самого нейромедиатора, и, в конечном итоге, развивается двигательный дефицит", - приводит слова научного сотрудника лаборатории нейрогеномики поведения ФИЦ Институт цитологии и генетики СО РАН Антона Цыбко официальное издание СО РАН "Наука в Сибири". Смотрите также Запуск транспортного пилотируемого корабля "Союз ТМА-17М". 

Кроме того, ученый отметил изменения в другой крайне важной структуре мозга - гипоталамусе. Здесь были обнаружены признаки апоптоза (программируемого клеточного "самоубийства"), который с большой долей вероятности провоцируется именно микрогравитацией. Уже подтверждено: и на орбите, и на Земле - в экспериментах, моделирующих состояние невесомости - апоптоз нейронов усиливается. "Это чревато общим ухудшением метаболизма и много чего еще. Учитывая, что в невесомости организм и так находится под ударом, любое изменение его функционирования в худшую сторону может иметь довольно серьезные последствия", - пояснил Цыбко. 

Ученые отметили, что, к счастью, эти изменения не фатальны, а физическая нагрузка и вовсе препятствует их появлению. У животных двигательная активность восстанавливается за неделю. Мозг начинает снова нарабатывать упущенное, уровень серотонина, дофамина возвращается к норме довольно быстро. В течение месяца нейродегенерация произойти не успевает.

Запустить же мышей в космос на большее время пока еще представляется проблематичным. Физкультура - спасение для космонавтов Исследование проводилось на лабораторных мышах, совершивших 30-дневное космическое путешествие на биоспутнике "Бион-М1". Ученые отмечают, что анатомия и физиология мыши во многом похожи на человеческие, наши геномы на 99% совпадают, поэтому линейные мыши - наиболее подходящие объекты для изучения механизмов адаптации к невесомости. Однако есть существенное отличие: космонавты, в отличие от мышей, способны сознательно заставлять себя двигаться, они больше четырех часов в сутки занимаются физическим упражнениям, а значит - стимулируют двигательные центры в мозге и минимизируют риск повреждения дофаминовой системы. 

Однако, если пробыть на орбите хотя бы две недели и не выполнять никаких специальных физических упражнений, то по возвращению на Землю состояние оказывается очень тяжелым и требуется долгая реабилитация. "Бион" - серия советских и российских космических аппаратов, разработанных ЦСКБ-Прогресс и предназначенных для биологических исследований. За 11 полетов на них были проведены эксперименты с 212 крысами, 12 обезьянами и рядом других животных. Спутник "Бион-М1" был запущен 19 апреля 2013 года и вернулся на Землю спустя месяц. 

Кроме мышей на борту находились монгольские песчанки, ящерицы-гекконы, рыбы, пресноводные и виноградные улитки, личинки жука- древоточца, микроорганизмы, водоросли, лишайники и некоторые высшие растения. На сегодняшний день эксперимент "Бион-М1" завершен. В ближайшие годы должен быть запущен "Бион-М2".

Источник

Невесомость заставляет клетки тела менять форму

Исследователи выяснили, что микрогравитация — состояние, которое принято называть невесомостью, — вызывает повреждения каркаса клеток тела человека, что, в свою очередь, влечет за собой нарушения в работе генов. 

Эксперимент проводился на Международной космической станции. Целью ученых было выяснить, каким образом невесомость влияет на состояние цитоскелета живых клеток — их каркаса, который находится в цитоплазме. В результате работы выяснилось, что под действием невесомости клетки меняют свою форму. 

Авторы исследования уверяют, что следствием этого являются нарушения в работе некоторых генов, которые, в свою очередь, вызывают целый ряд заболеваний: некоторые виды рака, остеопороз, а также ревматические заболевания. Ученые планируют продолжить свои исследования и определить более точно, какие изменения формы клеток влекут за собой перечисленные проблемы со здоровьем.

Источник

Скотт Келли: «Мы не понимаем воздействия космоса на организм человека»

Астронавт Скотт Келли заявил, что пребывание в космосе имеет на астронавтов «постоянное воздействие, которое мы просто полностью не понимаем». Вернувшийся из годичной миссии на МКС Келли уверен, что сначала надо изучить влияние космической среды на человека, а уже потом организовывать длительные космические путешествия.

В качестве примера побочного действия космоса астронавт привел влияние монооксида углерода и радиации, проблемы со зрением и потерю костной и мышечной массы из-за низкой гравитации. Скотт Келли провел год на МКС, чтобы исследовать долговременное влияние космоса на человеческий организм. Его брат-близнец Марк Келли на Земле был контрольным экземпляром.

«Среда, которая окружает астронавтов в космосе, не похожа ни на что на Земле, — говорит Скотт Келли. — Пребывание в космической среде имеет постоянное воздействие, которое мы пока просто полностью не понимаем».

Келли детально рассказал о том, как его кожа стало чувствительной и склонной к раздражениям, так как он ничего не касался в космосе почти год, и как его ноги распухли из-за изменений в гравитации. Также астронавт начал испытывать симптомы гриппа.

Комитет по космосу, науке и технологии США планирует требовать от НАСА пожизненной медицинской страховки для всех астронавтов.

Источник

Почему в космосе теряется костная ткань

Международная группа ученых изучила рыбок, побывавших на МКС, и обнаружила клеточные механизмы, управляющие потерей костной массы в невесомости. Оказывается, микрогравитация меняет работу генов, которые отвечают за развитие клеток костной ткани.
Вообще-то при микрогравитации становится плохо не только рыбьим скелетам. Потеря костной ткани — одна из самых серьезных проблем, с которыми сталкиваются космонавты во время и после вахты на МКС. Проявления потери напоминают старческий остеопороз, хотя космонавты сталкиваются с ней задолго до старости — кости становятся более хрупкими и ломкими, теряют кальций. Изменения на клеточном уровне заметны сразу после полета в пикирующем самолете.

Клеточный механизм потери костной ткани до сих пор оставался невыясненным. Известно, что невесомость меняет в живом организме многое — так, сердце постепенно теряет навык ускоряться при резком изменении давления. Из-за этого космонавты, вернувшиеся на Землю, падают в обмороки от резких движений. Изменения происходят и на уровне генной экспрессии и наблюдались при сборе биоматериалов у космонавтов.

Чтобы выяснить, что именно происходит в клетках костей и хрящей в невесомости, ученые решили отправить на МКС японских аквариумных рыбок медака (Oryzias latipes), клеточные механизмы развития костей и хрящей у которых очень схожи с механизмами млекопитающих. В 2014 году на борт космической станции полетели генномодифицированные рыбки, в тельцах которых повышенная активность определенных генов обнаруживала себя как яркое свечение.

Выяснилось, что уже на первые сутки в невесомости у рыбок начинали усиленно работать 105 генов, а еще 49, напротив, были гораздо менее активны в космосе, чем в телах рыбок из контрольной группы на Земле. Из этих генов 5 связаны с развитием клеток скелета: два регулируют рост остеобластов (молодых клеток костей), и три — остеокластов — гигантских клеток, которые занимаются растворением имеющейся костной ткани. Все эти гены регулируют выработку факторов транскрипции, которые участвуют в развитии остеобластов и остеокластов.

В нормальных условиях эти гены вступают в работу в разное время, но невесомость сдвинула их графики и привела к серьезным изменениям в структуре костной ткани. Ученым еще предстоит объяснить, как именно это происходит и у лабораторных рыбок, и у человека.

Еще более важны общие выводы, которые делают авторы исследования: изменения активности генов в первый же день изменения гравитации предполагают наличие у клетки готового механизма защиты от скачков силы тяжести, который включается почти мгновенно. Этот механизм значительно меняет всю хроматиновую структуру — вещество клеточного ядра, которое состоит из ДНК, РНК и белков, необходимых для их работы, настраивая ядро в соответствии с изменением гравитации.

Источник

Как космос влияет на человеческий организм

Людям, грезящим космосом, следовало бы подумать о более насущных проблемах, нежели задаваться вопросами о существовании внеземных цивилизаций и отсутствии у них желания нас навестить или хотя бы услышать.  В конце концов, мы уже не только довольно давно посылаем людей на орбиту, мы также говорим об уже почти ощущаемом на горизонте космическом туризме, радостно удивляемся планам мировых космических агентств поселиться на Марсе и новостям о частных компаниях, инвестирующих сотни миллионов долларов в изучение вопросов, связанных с выживанием на других планетах.
«Космос — это суровая среда, очень редко прощающая человеческие ошибки и технические неисправности», — пишут исследователи в книге «Биология в космосе и жизнь на Земле: влияние космических полетов на биологические системы» (Biology in Space and Life on Earth: The Effects of Spaceflight on Biological Systems).

Но, к сожалению, человеческие ошибки и технические сбои – не единственные проблемы, о которых всем нам стоит подумать, перед тем как начать эпоху космической колонизации.

«Самая главная проблема в подобных миссиях — биомедицинская. И заключается она в том, как поддерживать здоровье человека в условиях долгого пребывания в подобных суровых условиях», — комментирует отставной астронавт Лерой Чиао.

Ниже рассмотрим примеры последствий, с которыми людям, летающим в космос, приходится сталкиваться как в рамках самих полетов, так и после их возвращения домой.

Микрогравитация – тихий убийца

На первый взгляд может показаться, что невесомость – это одна из самых приятных вещей, связанных с космическими путешествиями, однако не стоит недооценивать микрогравитацию и ее влияние на биологические системы человека.

Нехватка гравитации в космосе ослабляет и делает менее эффективной нашу сердечно-сосудистую систему. Вместо того чтобы как обычно и без особых усилий распределять кровь по всему нашему организму, ее неэффективная работа позволяет крови концентрироваться в голове и груди, что существенно повышает риск развития артериальной гипертензии (постоянно высокого артериального давления). В более серьезных случаях, когда вследствие невесомости снижается эффективность подачи и распределения кислорода в организме, повышается риск развития сердечной аритмии.

Так как мышечная активность в условиях микрогравитации существенно снижается (мышцам не нужно бороться с земной гравитацией), некоторые главные мышцы организма при долгом нахождении человека в космосе начинают атрофироваться. Потеря мышечной массы и ее прочности являются непременным бонусом каждой долгоплановой космической миссии. Именно поэтому членам экипажа Международной космической станции предписано в обязательном порядке ежедневно выполнять в течение пары часов физические упражнения, направленные на укрепление икроножных мышц, квадрицепсов, а также мышц шеи и спины.

Частичная слепота

Риску последствий от долгого пребывания в космосе подвержена не только мышечная система человека. Были случаи, когда после продолжительного нахождения в космосе отмечались тревожные признаки нарушения зрения. И случаи эти, нужно признаться, оказались, к сожалению, не единичными.

Две трети астронавтов Международной космической станции сообщали о проблемах со зрением. Основное подозрение, по мнению специалистов из аэрокосмического агентства NASA, падает на изменения в распределении жидкости в полости черепа, в глазах и спинном мозге в ответ на условия, создаваемые микрогравитацией. Результатом этого является появление синдрома нарушения зрения ввиду повышения интракраниального давления. У нас этот синдром чаще всего называют внутричерепной гипертензией (ВЧГ). К счастью, технологии не стоят на месте, и однажды мы получим инструменты, позволяющие не только понимать, но и эффективно предотвращать появление последствий связи между внутричерепным давлением и микрогравитацией.

Неизбежность облучения

Некоторые люди на Земле обеспокоены излучением электрических устройств вроде смартфонов. Интересно, что бы они сказали, если бы узнали, с каким уровнем излучения приходится сталкиваться человеку в космосе?
«В космосе мощность дозы облучения может быть в 100-1000 раз выше, чем на Земле», — комментирует Кери Зейтлин из Юго-Западного исследовательского института США.

«Само же излучение присутствует в виде космических лучей – высокозаряженных частиц, от которых нас на Земле экранируют магнитное поле нашей планеты и ее атмосфера».

Влияние этого воздействия на человеческий организм может выходить далеко за рамки нашего понимая здоровой среды. Средняя доза облучения, которой в течение года от естественных источников подвергается человек на Земле составляет 2,4 мЗв (миллизиверта) с разбросом от 1 до 10 мЗв. Все, что выше 100 мЗв, рано или поздно может привести к возникновению рака. Тем временем астронавты, находящиеся на борту Международной космической станции, могут подвергаться облучению в 200 мЗв. Если же говорить о межпланетных перелетах, то этот уровень вообще будет составлять около 600 мЗв. Даже полет на самую ближайшую соседнюю планету, Марс, может привести к возникновению генетических мутаций, разрушению ДНК-цепочек, а также к 30-процентному повышению риска развития рака.

К счастью, экипаж МКС находится под защитой от большей части излучения благодаря тому же магнитному полю, которое бережет нас на поверхности планеты. Но если речь идет о реальном полете на Марс, то никакой подходящий защиты для этого у нас пока нет. Решить этот вопрос пытается NASA, которое ведет разработку методов по оптимизации экранирующих средств, а также способов биологических контрмер в отношении радиоактивного облучения.

Грибковая инфекция

Несмотря на все наши старания обеспечить безопасность и чистоту внутри космических аппаратов, проблема появления и воздействия на человеческий организм патогенных организмов в космосе по-прежнему остается нерешенной. Согласно исследованию, опубликованному Американским сообществом микробиологов, уровень роста Aspergillus fumigatus (аспергиллус фумигатус), являющегося самой распространённой причиной появления грибковой инфекции у людей, совершенно не подвержен суровым космическим условиям.

Если такая банальная и распространенная вещь, как фумигатус, способна попадать и существовать на МКС, то, вероятнее всего, на станции могут иметься другие и уже более летальные патогенные микроорганизмы. Учитывая далеко от легкой доступность ближайшей больницы, любая инфекция на борту космического аппарата может привести к очень серьезным последствиям. Поэтому только дальнейшее улучшение жилищных условий и уровня гигиены, а также развитие технологий, способных обеспечить медицинскую диагностику и помощь в космосе, сможет уберечь астронавтов от больших проблем, начинавшихся когда-то, казалось бы, с самого малого и незначительного.

Нарушения психики

Не только физическое здоровье астронавтов, долгое время пребывающих в космосе, находится под угрозой. Нахождение в маленькой, герметично запертой космической консервной банке в течение долгих месяцев, в рамках которых вам приходится ежедневно общаться с одними и теми же людьми, осознавать то, что вы не можете даже просто удобно улечься на кровать или встать и свободно пройтись, – все это, а также многое другое может накалить ваше психическое состояние до предела и в конечном итоге нанести серьезную психологическую травму.

Результаты профинансированного аэрокосмическим агентством NASA исследования, связанного с проблемами долгого пребывания в космосе, показывают, что основная обеспокоенность американских астронавтов во время их миссий на борту Международной космической станции связана с вопросом о том, как себя вести с членами экипажа. В своем личном дневнике один астронавт писал о стрессе, который он испытал в рамках таких межличностных отношений:

«Мне очень хочется выбраться отсюда. Из этих тесных каморок, в которых тебе приходится проводить долгое время с одними и теми же людьми. Даже те вещи, на которые вы в повседневной обычной жизни, скорее всего, не обратили бы своего внимания, после определенного времени начинают здесь надоедать настолько, что способны свести с ума любого».

Исследований на тему безопасности и защиты психологического здоровья астронавтов в рамках их пребывания в космосе проводилось уже немало и будет проводиться еще больше с учетом увеличения времени продолжительности космических полетов.

Максимальная поддержка здоровья человека в период долгих космических полетов является очень серьезной проблемой и очень трудоемкой задачей для решения, однако даже это не останавливает людей, желающих стать космическими пионерами. В мире действительно есть люди, готовые буквально на все. Несмотря на все риски, описанные в результатах многочисленных исследований, несмотря на все те потенциальные опасности, которые ожидают человека в космосе, несмотря на все те риски для здоровья наших биологических систем и психики, аэрокосмическое агентство NASA в 2016 году получило более 18 000 заявок на право стать астронавтами. Рекордное число! Остается лишь надеяться, что проводящиеся сегодня исследования в недалеком будущем действительно позволят нам осуществлять безопасные космические путешествия, по уровню угроз не обгоняющие обычные земные.

Источник

Мозг космонавтов меняется после полета в космос

Проведённые перед и после полета в космос МРТ-снимки показали, что мозг астронавтов сужается и расширяется при выходе за пределы земной атмосферы. Это первое исследование, авторы которого обратили внимание на структурные изменения мозга астронавтов во время полета в космос.

Оказалось, что объем серого вещества увеличивается или уменьшается, и уровень этих изменений зависит целиком от продолжительности времени, проведенного на космической орбите.

Авторы исследования провели МРТ-сканирование мозга 12 астронавтов, которые провели не менее двух недель в космосе, а также еще 14, которые прожили 6 месяцев на Международной космической станции. У всех астронавтов отмечалось увеличение или уменьшение объема серого вещества в разных зонах мозга, при этом, чем дольше люди находились в космосе, тем более значительными были эти изменения мозга.

Ученые обнаружили перемены в объёме серого вещества в областях мозга, которые контролируют движения ног и обрабатывают сенсорную информацию от нижних конечностей. Это отражает перемены, связанные с процессом обучения новым движениям в условиях гравитации.

По мнению авторов исследования, нынешние изменения мозга могут символизировать новые связи между нейронами. Ученые получили в свое распоряжение ценнейшую информацию о работе человеческого мозга, которую можно использовать при лечении различных болезней. В частности, доказано, что мозг способен использовать самые разные сигнальные пути для компенсации структурных изменений, вызванных космическими полетами.

Источник

Физик рассказал как радиация влияет на космонавтов

Космонавты за сутки получают дозу радиации в 200 раз больше, чем человек на Земле. Если сравнивать с медицинским рентгенографическим исследованием, то окажется, что суточная доза радиации космонавта — 0,6 миллизиверта — это 5–6 сеансов обследования грудной клетки. На Земле естественный радиационный фон состоит в основном из гамма-излучения, в космосе — из заряженных частиц. Элементы таблицы Менделеева ускорены до десятков, сотен гигаэлектронвольтов, поэтому могут прошивать несколько метров толщины защитного покрытия.
 
Проводились исследования здоровья космонавтов, чтобы понять, болеют ли они раком чаще, чем остальные люди. Сделали вывод, что нет, но у этого исследования очень маленькая статистика: космонавтов не так много. Безусловно, радиация сокращает жизнь, потому что приводит к преждевременному старению организма. И чтобы космонавты оставались молодыми и здоровыми, придуманы нормативы облучения. В России это 1000 миллизиверт за всю жизнь, при этом за год космонавту разрешено получить не больше 200 миллизиверт.
 
С точки зрения современных нормативов постоянно находиться в космосе нельзя: предельную дозу радиации человек получит за 4 года (4 х 200 = 800 мЗв, еще 200 мЗв — это запас на непредвиденные обстоятельства). Космонавты-рекордсмены проводили в космосе около 850 суток. Если соблюдать все нормативы, за чем следит служба радиационной безопасности пилотируемых космических полетов, то жизнь космонавтов сократится не более чем на 2,5–3 года.
 
Стоит учесть, что уровень радиации в космосе непостоянный и меняется из-за солнечных протонных событий, которые увеличивают дозу облучения, полученную космонавтом. Текущие пилотируемые полеты проходят на низкой орбите (как говорят специалисты, на орбите со среднеширотным наклонением). Там под защитой магнитосферы доза от вспышек ослабляется в несколько сот раз, поэтому доза облучения за те сутки, когда происходит солнечное протонное событие, увеличивается максимум в 10–15 раз. Ситуация кардинально меняется, если мы находимся за пределами магнитосферы (примерно 10 радиусов Земли) или ближе к полюсам на низких широтах. В этих областях магнитосфера нас никак не защищает, солнечные вспышки начинают представлять реальную опасность, так как доза радиации возрастает в 200–300 раз по сравнению с невозмущенным периодом. Это вызывает ближайшие эффекты воздействия радиации: головокружение, тошноту, потерю аппетита, ухудшение работоспособности — для космонавта это опасное явление. К счастью, мощные вспышки достаточно редки — один-два раза за солнечный цикл (11 лет), и их максимальная продолжительность не превышает двух суток.
 
В разных отсеках космического корабля доза радиации различается, показания могут разниться даже внутри тела человека. Прежде всего нужно научиться контролировать уровень радиации: у космонавтов есть различные дозиметры, датчики, по которым можно получить информацию об облучении. В зависимости от солнечной активности мы рекомендуем экипажу находиться в тех отсеках космической станции, где доза радиации меньше, ― это отсеки, которые не выпирают из корпуса.
 
В службе радиационной безопасности пилотируемых космических полетов мы предложили защищать космонавтов, разместив на тонкую наружную стенку специальное изделие. Защитная шторка — это «матрас» с космическими салфетками — марлевой тканью, пропитанной водой и запаянной в полиэтиленовый мешок. Влажные салфетки заменяют душ космонавтам, их можно не просто складировать на станции, а использовать в качестве дополнительного слоя воды, который защищает космонавта от радиации в отсеках. Вода и полиэтиленовые пластины задерживают вторичные частицы — нейтроны, и доза радиации поглощается эффективнее.

Источник

Невесомость влияет на здоровье космонавтов на молекулярном уровне

Ученые из России и Канады в совместном исследовании проанализировали влияние условий космического полета на белковый состав крови у 18 российских космонавтов. Результаты исследования выявили, что при полетах в космос в организме человека происходят серьезные изменения на уровне клеток, тканей и органов, помогающие приспособиться к новым условиям. Инициатором исследования стал профессор Сколтеха и МФТИ Евгений Николаев. Результаты опубликованы в престижном научном журнале Nature Scientific Reports.

Влияние полетов в космос на организм человека активно изучается с середины XX века. Хорошо известно, что факторы космического полета оказывают воздействие на обмен веществ, терморегуляцию, сердечные биоритмы, работу мышц, дыхательную систему и многие другие функции организма человека. Тем не менее молекулярные механизмы, лежащие в основе этого влияния, до сих пор являются загадкой для ученых и врачей.

Белки – главные игроки в процессах адаптации нашего организма к тем или иным условиям, поэтому специалисты решили обратиться именно к ним. Для этого были проанализированы концентрации 125 белков в плазме крови 18 космонавтов из России, которые находились на Международной космической станции продолжительное время. Космонавты сдавали анализы за 30 дней до полета, сразу после возвращения на Землю и через 7 дней после возвращения.

Концентрации белков, выбранных учеными, измерялись при помощи метода масс-спектрометрии – технологии, позволяющей проводить идентификацию (определять, что за молекула) и количественный анализ той или иной смеси веществ (количество молекул определенного типа в смеси). В результате исследования были обнаружены белки, чьи концентрации остаются неизменными, белки, чьи концентрации меняются, но быстро возвращаются к своему обычному уровню, и белки, содержание которых в крови восстанавливается очень медленно после возвращения космонавта на Землю.

«Для исследования был взят неслучайный набор белков. Исследованные белки – набор биомаркеров, использующихся для выявления неинфекционных заболеваний человека. Результаты показали, что в условиях невесомости иммунная система ведет себя как при болезни, потому что организм человека не понимает, что ему делать, и включает всевозможные системы защиты. В нашей работе впервые была использована количественная протеомика для таких целей, то есть определялось не только наличие белка, но и его количество. Мы планируем использовать более таргетный подход в будущем, для того чтобы найти больше специфических белков, отвечающих за изменения в организме человека в условиях невесомости. Для этого космонавтам придется сдавать кровь прямо на орбите», – пояснил профессор Евгений Николаев.

Изменения, которым подвергается организм человека во время космического полета, очень интересны, потому что к ним нас не подготовила эволюция. Совершенно неизвестно, есть ли у человека механизмы, позволяющие быстро приспосабливаться к таким серьезным изменениям условий существования. Результаты, полученные в исследовании, показывают, что, скорее всего, таких механизмов нет, так как при полете в космос процессам адаптации к новым условиям подвергаются все ключевые типы клеток, органов и тканей в организме человека, то есть организм не знает, что делать, и пытается делать все и сразу.

Источник

Нецензурные и оскорбительные комментарии удаляются.
Если не воспроизводится видео, не работает ссылка, просьба сообщить в комментарии под статьёй.